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1. INTRODUCTION

This report concerns the design and implementation of a BASIC

language interpreter which is restricted to the environment of the

Intel 8008 microprocessor. The value of the project was in overcoming

the severe restrictions imposed by an 8-bit machine with only four

general purpose registers, one accumulator, and two registers used

simultaneously to form one core address. Furthermore, the machine's

numerical capability is characterized by its two arithmetic instructions

:

8-bit add and subtract. All addresses (ik bits) must be broken into

high and low order bytes and stored in the H and L registers, respectively,

for any memory reference. With a cycle time of 20 microseconds average,

the machine is no number-crunching giant, but is more than adequate for

the dedicated processor we envisioned.

This project is the direct result of a seminar course on mini-

computers taught at the University of Illinois by Professor James Vander

Mey. While the project itself was executed entirely on an Intel simulator,

we feel that the techniques developed are directly applicable to the

hardware described.

The hardware environment envisioned for this project included:

a microprocessor with a l6Kx 8-bit word memory (Intel MCS-8), an ASCII

keyboard, a black-and-white television for the display, and a custom-

designed hardware interface which continuously displays the contents of

a 2K buffer in Intel memory. Design and implementation of the interface

was wholly controlled by another group.



The language which has been implemented is a version of BASIC

which incorporates all of the most common features of the language and

a few versatile extensions. A conscious effort was made to "design with

forethought" so that future modifications, either by the authors or others,

would not require extensive modification of the existing routines. The

BASIC language statements currently implemented include: LET, DIM, DEF,

REM, GOTO, IF, FOR, TO, NEXT, GOSTJB, RETURN, INPUT, PRINT, STEP, THEN,

STOP, and END. The operators provided are addition, subtraction, multi-

plication, division, exponentiation, and the Boolean operators AND, OR,

NOT, LESS-THAN, LESS-THAN-OR-EQUAL, GREATER-THAN, GREATER-THAN-OR-EQUAL,

EQUAL, and NOT-EQUAL. The extensions to the language include: up to

26 3-dimensional arrays, up to 26 user-defined functions, user functions

with nested (but not recursive) definitions 5 levels deep, six built-in

functions (sine, cosine, arctangent, exponential, logarithm, and square

root), full floating point arithmetic performed with 5 byte operands

(h byte mantissa, 1 byte exponent) with results rounded to h bytes (3

byte mantissa and 1 byte exponent), character strings in the PRINT

statement, and FOR-loops nested up to 5 levels deep.

The BNF for the BASIC language implemented is supplied in

Appendix A. The use of specially encoded keyboard keys for all multi-

character keywords (LET, DIM, ..., END, relational operators, and user

functions FNx) allows our grammer to be LL(l), thus simplifying the

parsing technique.

The project broke neatly into two phases - design and development

and the development phase itself was split into three basic areas:

(l) the operating system , including master control of the CPU, mode

switching, context switching, polling routine for the keyboard,



complete text editing system, screen display management, user

source text memory management, and user "output page" memory

management;

(2) the syntactic/semantic analyzer , including BASIC syntax recognizer,

error detection/location routines, lexical analyzer, and symbol

table manager;

(3) the execution routines , including specific utility routines needed

by the syntax analyzer (stack control and lexical pointer movement),

a floating point arithmetic package (add, subtract, multiply,

divide, fix, float, compare, load, store, and error branching),

a transcendental function evaluator (sine, cosine, log, exponential,

arctangent, and square root), and a two-way floating-point-to-character-

string and character-string-to-floating-point conversion package.

The following sections and appendices present an explicit report

of the design philosophy and characteristics of the three major areas.
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2. OPERATING SYSTEM

The operating system is charged with the responsibility of

managing the CPU. As a dedicated processor, the CPU exists only to

serve the user, but it does so in one of six possible environments.

2.1 Text Editing

In pure text editing mode the keyboard is used to build text

on a display screen using the elementary operations of insert character,

delete character, replace character, delete line, scroll up 1 or 8 lines,

and scroll down 1 or 8 lines. No syntax checking of any kind is performed

in this mode. To aid the user, a moveable cursor (@) is positioned

immediately to the left of the character or line to be inserted, replaced,

or deleted. Thus the programmer has constant and precise control over

the location of any of his changes. The cursor is moved by depressing

one of its special control keys

:

->

(right arrow) move right one character;

AB@CD becomes AB0@D

(left arrow) move left one character;

AB@CD becomes A@BCD

t

(up arrow) move cursor to the beginning of the current

line or, if it is already at the beginning

of a line, to the beginning of the previous

line;



ABCD becomes ABCD

EP@G @EFG

and

ABCD becomes @ABCD

@EFG EFG

I

(down arrow) move cursor to the beginning of the next

line;

AB@CD becomes ABCD

EFGH @EFGH

The user's memory space, at addresses lkK through l6K-l
}

is

bounded by non -ins ertable markers at the beginning of the user's source

text (static), end of source text (dynamic), and end of user's data

page (dynamic). The display is initialized as follows:

[~/gi iiiiiiiitiiiiiiirfiiiititttiiiiit*]

where [ represents the beginning -of-text marker
(source page and output page),

@ represents the cursor,

I represents the end-of-line marker,

and ] represents the end-of-memory marker.

The text editor functions are accomplished by manipulating a

line of text or the entire program as necessary. A replace character

requires no text movement, but an insert or delete character requires

that all of the text from the cursor to the end-of-memory marker be

shifted one byte in core.

Insertion is typical of the operations performed, and some

operation counts show that if an insertion is to occur n characters



to the left of the end-of-memory marker then the elapsed time t from

picking up the character in the polling loop until the CPU returns to

the polling loop is

:

20 microseconds/instruction * (50 + 20n) instructions

For example:

n t

10 0.5 milliseconds

100 kl milliseconds

1000 0.^4- seconds

Assuming an average keyboard rate of 3 characters/second, a

burst rate of 10 characters/second, and an average text movement of

less than 100 characters, we found that the machine "will adequately

keep up with the user by using only a single one- byte hardware buffer.

Additional command codes were reserved (but not implemented)

for such handy functions as FILE-SCREEN-TO-TAPE, MOVE-TAPE-TO-SCREEN,

SORT-SCREEN-BY-SEQUENCE-NUMBERS , etc

.

Appendix D documents the operating system/text editor.

Each screen display shows the state of the screen just prior

to the receipt of the next character from the keyboard.

2.2 Syntax Checking

When operating in the "BASIC" mode, the operating system provides

line-by-line syntax checking of the. text being inserted on the screen,

in addition to providing all of the text editing features described in

section 2.1 above. Every time the cursor moves right over an end-of

-

line marker (in response to a right arrow, down arrow, or insertion of

an end-of-line character), the syntax analyzer is called to parse the

line just created. Whenever the cursor moves left over an end-of-line,



the syntax analyzer (SYNA) is called to "unparse" the line just entered.

This feature allows the user to interactively construct a syntactically

correct BASIC program. Special command keys are provided to allow the

user to change from "BASIC" mode to "TEXT" mode, and vice-versa.

2.3 Run-time Monitoring

When a RUN command is detected by the operating system (OS)

command decoder, OS enters the third of its major roles, that of an

execution monitor. In response to the RIM command, OS initializes all

of the interpreter variables (primarily the symbol table and the parsing

stacks), sets the lexical (LEXl) pointer to the first executable state-

ment, removes the cursor from the program text, switches the screen

display base address to point to the data page, and begins calling SYNA

on a line-by-line basis. After each return from SYNA the keyboard strobe

(an "in use" bit) is checked and any character on the data bus is read.

The only character recognized while executing is a STOP IMMEDIATE command,

which causes OS to jump to the immediately executable statement routines

described below. Other characters are ignored until execution is term-

inated, either normally (by execution of a STOP statement) or as the

result of an error. Normal termination leaves OS in the "BASIC" (syntax

checking) mode. Commands are provided for jumping from data page to

program page and back again. Detection of an error causes SYNA to jump

to an OS routine for error handling.

2.k Error Handling

When the error routine is entered the screen base pointer is

shifted back to the program page, a message describing the error is

inserted on a line following the one in which the error was detected,
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and the cursor is inserted in the program at the spot nearest the error.

This enables the user to quickly locate his error. The operating system

then jumps to the text editing/syntax checking routines in anticipation

of error correction attempts by the user.

2.5 Immediately Executable Statements

Immediately executable statements are handled as described

under "run-time monitoring". The user may stop a running program by

pressing the STOP IMMEDIATE key, thus causing the program to halt at the

end of the currently executing line. The operating system then allows

code to be entered line-by-line in the "immediately executable" mode.

Each line must be followed by the EXECUTE IMMEDIATE command key, which

causes the line just constructed to be parsed and immediately executed.

The user may jump back and forth between the program and data pages, but

may not modify the program unless he leaves the immediately executable

mode. A RESTART command is provided which causes the user program to

begin execution at the point where it was interrupted (unless one of the

immediately executed statements caused a branch, in which case execution

begins at the branch address). The user may operate the system as a desk

calculator by initially jumping to the data page and inserting unnumbered

BASIC statements, each followed by the EXECUTE IMMEDIATE command.

2 .

6

Input/Output

The operating system provides input-output facilities which

may be used by SYNA. when in the execute or execute immediate mode. All

input requests and output text are displayed on the data page. The

conversion routines in the floating point arithmetic package are used

to provide the ASCII-to-binary and binary-to-ASCII conversions. Input



requests may be made to provide data for a scalar variable or an array

element. Array subscripts are taken from SYNA's expression stack. A

typical such input request might be:

INPUT X(2,5) > @

The input data is inserted to the right of the great er-than sign, and

is converted to internal floating point by the appropriate conversion

routine.

There are three separate output routines: one which causes

the data page display to skip to a new line , one which outputs numbers

,

and one which outputs character strings. The character string routine

requires the H and L registers to point to the beginning of the string

and leaves the LEXI pointer to the right of the terminal quote. The

numeric routine displays a number pointed to by the top of SYNA's address

stack. Commands are ignored during this I/O activity. The output routine

for numbers will print them in its choice of FORTRAN I, F, or E format,

depending upon the magnitude and precision of the particular number being

output. The input routine accepts the input string in any format.

All of the above routines are written as pure procedures, and

in a modular fashion. There is a reasonable amount of optimization

possible in the OS routines, particularly in the n-way branches. Total

size of the text editor/operating system is about 3000 bytes.
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3. SYNTACTIC AND SEMANTIC ANALYSIS

3.1 Syntactic Analysis

SYNA is the heart of the BASIC language capabilities of our

system. It performs both syntactic correctness checking and interpretive

BASIC language program execution. SYNA is called on a statement-by-

statement basis from the operating system; when a statement has been

correctly parsed or executed, a normal return is made to OS; if an

error is detected, control passes to an error recovery procedure in OS

where appropriate recovery measures are taken (these are documented

elsewhere).

The syntax analyzer is essentially a stack oriented pushdown

automaton. As a statement is parsed, the analyzer makes a sequence of

state transitions that depend on the current input symbol (token) in

the statement. Entering certain states causes the syntax analyzer to

accept the statement, and likewise, other combinations of the analyzer's

state and input token cause the analyzer to reject the statement and

signal an error.

In an effort to conserve space, the state transitions are

encoded in table form, making the syntax analyzer table-driven. A fairly

small table driver routine causes new tokens to be input when required

by a lexical analysis routine, moves the analyzer through the state table,

manipulates the analyzer's stack, and invokes a set of execution routines

that perform the actual operations defined in the BASIC language. For

a more detailed explanation of the state transitions and a view of the
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syntax table, see appendices B and C.

In addition to the analyzer's parser stack, a number of other

stacks are maintained by SYHA.. These include an address stack, an

expression value stack and corresponding operator stack used for expres-

sion evaluation, a FOR-loop stack and a user function evaluation stack.

The parser stack is used strictly for state transitions by the pushdown

automaton. The address stack (2 bytes wide) is used for executing GOTO

and GOSUB statements, for array reference resolution, and for any general

bookkeeping operation requiring two bytes of stack storage. The expres-

sion stack (k bytes wide) is used to store temporary arithmetic components

and results involved in expression evaluation. The operator stack (2

bytes wide) uses one byte to identify the arithmetic operator involved

and the other byte to hold the operator's F precedence (see D. Gries

,

Compiler Construction for Digital Computers , chapter 5, "Simple Precedence

Grammers"). The stack is used in conjunction with the expression stack

in evaluating expressions. The FOR-loop stack is used to keep track of

FOR-loop nesting in the program. Each time a new FOR-loop is entered,

an entry is pushed onto the FOR-loop stack. When the loop is exited,

the stack is popped one level. The last stack is a user function stack

(3 bytes wide). One byte points to the symbol table location of the function,

and the other two bytes hold the return address for use after the function

has been evaluated. The function stack is needed since one function

may be defined in terms of another function.

Under the current implementation (easily modifiable) the function

stack is 5 deep, the FOR-loop stack is k deep, the expression and oper-

ator stacks are each 10 deep, and the parser stack is 15 deep.

The syntax analyzer operates in one of three modes, determined
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by the operating system. When the programmer pushes the RUN key, all

variables (both compiler and program) are initialized to zero and then

SYNA is called statement -by-statement throughout the program; SYNA.

again performs a syntax check on each statement and then executes the

statement. This is the EXECUTE mode, in which all stacks are fully

operational and utilized.

As explained in the operating system chapter, the programmer

can type in his program in an interactive BASIC environment, giving him

a syntax check on his statement as it is entered, but not actually exe-

cuting the statement. This is the normal PARSE mode. The FOR-loop

stack, parser stack, and address stack are operational in this mode.

The expression stack, operator stack, and function evaluation stacks

are not used since the statement is not actually executed.

One primary goal for the project was to provide good syntax

checking and error detection in this normal PARSE mode. To do this,

FOR-loop nesting should be checked even though the loop is not actually

being executed (indeed, at the time the analyzer is parsing the FOR

statement, the loop contents and the NEXT statement probably do not

even exist.). Thus, SYNA builds the FOR-loop stack at parse time, enabling

the check on loop nesting. Also, we require array and function definition

before use so that we can insure that all uses of the same variable are

consistent. To handle this, SYNA sets a flag bit in the symbol table

when an array is defined by a DIM statement, and likewise when a function

is defined by a DEF statement. Now all uses of the array or function

name can be checked for syntactic correctness and previous definition.

The only complication which arises in the above scheme of syntax

checking occurs when the programmer backs up the cursor and changes,
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inserts, or deletes statements which have already been parsed. To

adequately handle these occurances, the syntax parser actually needs

to back up with the cursor and undo any FOR-loop nest checking or array/

function definitions. For this purpose, the operating system will call

S"YNA in the UNPARSE mode whenever the cursor is backed up over an end-

of-line. For example, if a NEXT statement is backed over, the FOR-loop

stack will be pushed up one level to indicate that we are back inside a

FOR-loop again. If a DIM statement is backed over, all the arrays

dimensioned within that statement will have their "defined" bit turned

off (i.e., "not defined") in the symbol table.

Eventually, the programmer will move the cursor forward again

using the right arrow or down arrow keys ; when this happens SYNA is

called again in the regular PARSE mode, the statement is parsed again,

and the normal parsing actions are taken.

3.2 Semantic Analysis

It is apparent that, depending upon the mode when SYNA is called,

different operations are performed when a statement is parsed. As far

as the formal parser is concerned, it means that any given state can have

different semantic routines associated with it, depending upon the mode.

Thus, each state entry in the table has three bits, one for each of the

EXECUTE, PARSE, and UNPARSE modes, as well as an execution/semantic rou-

tine number. When a state is used in the table the execution/semantic

routine is invoked only if the bit corresponding to the current mode is

set. For example, the expression evaluation routine is an execution-

only routine, having its EXECUTE bit set and its PARSE and UNPARSE bits

not set in the SYNA table; thus this routine is called only if the mode

is EXECUTE.
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This concludes the discussion of the syntatic/semantic analyzer,

The lexical analyzer and symbol table manager are discussed separately.
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h. LEXICAL ANALYZER AND SYMBOL TABLE

k.l Lexical Analyzer

The lexical analyzer is a duty routine for the syntactic recog-

nizer. The lexical pointer LPTR contains in two contiguous bytes the

page number (high order 6 bits specifing which 256-byte page) and byte

number (low order 8 bits) of the ik bit addresses within the user area,

lk-K. through 16K-I. On entry to LEXI, LPTR points one byte beyond the

most recently scanned token (initially SYNA points it to l^K+1, the first

byte of user source text). LEXI isolates the next non-blank (possibly

the current) character, sets SEM (semantic class variable) to the ASCII

code of the character being examined if it is not an identifier or sets

SEM to the variable's displacement in the symbol table if it is an

identifier, and performs a pseudo binary search to identify the currently

scanned symbol as one of 15 token classes. The token class is recorded

in SYMB. If the token is an operator, LEXI records its F and G precedence

(see Gries) in the variables F and G.

The token classes are:

TOKEN ASCII SYMB SEM F G

LET

DIM

DEF

REM

GOTO

IF

FOR

ASCII SYMB SEM

129 15 129

130 15 130

131 15 131

132 15 132

133 15 133

13^ 15 13^

135 15 135
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TOKEN ASCII SYMB SEM F G

TO 136 15 136

NEXT 138 15 138

GOSUB 139 15 139

RETURN 11+0 15 11+0

INPUT ll+l 15 11+1

PRINT ikz 15 11+2

STOP 1^3 15 11+3

END Ikk 15 11+1+

STEP ll+5 15 1^5

THEN lk6 15 ll+6

NOT ll+7 3 ll+7 12 13

AND ll+8 k ll+8 '5 1+

OR ll+9 k ll+9 3 2

FN 15k 7 stp

SIN 155 6 155 7 6

ATN 156 6 156 7 6

COS 157 6 157 7 6

EXP 158 6 158 7 6

LOG 159 6 159 7 6

SQR 160 6 160 7 6

< 161 5 161 12 13

<= 162 5 l62 12 13

> 163 5 163 12 13

>= 161+ 5 16k 12 13

= 165 5 165 12 13

# 166 5 • 166 12 13

+ 1*3 1 1+3 9 8

- 1+5 1 1+5 9 8

* k2 2 1+2 11 10

/ kl 2 1*7 11 10

t 9h 2 9k 11 10
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TOKEN ASCII

( 4o

) kl

tt

34

5 44

end-of-line 92

A 65

B 66

SYMB

8

9

10

10

10

11

11

SEM

4o

kl

34

44

92

stp

stp

G

Ik

90

65 ko

66 4o

90 4o

11

12

12

12

U8 14

k9 14

57 14

16

stp

stp

stp

stp

stp = symbol table
pointer

A(

B(

• o

Z(

1

others
(unknown)

4.2 Symbol Table Manager

If a token is an identifier, a simple one character lookahead

resolves the question of whether the identifier is an array or a simple

scalar; likewise, after receiving the special FN key, the next character

determines which function (FNA, FNB, ..., FNZ) is being referenced. If

an identifier is referenced, LEXI calls the symbol table manager (LOOKUP)

which, in turn, finds or inserts that identifier in the symbol table and

returns the identifier's location as a displacement from the beginning

of the symbol table; the displacement is returned in the variable SEM.
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The symbol table search is based on a linear hash generated by AOT)ing

the symbol's ASCII code with 31 (=00011111p) and multiplying the result

by 8 (three left shifts). The 26 alphabetic characters now hash uniquely

to locations 8, l6, 2k, . .., 208. Then a linear search is begun at the

hash address HASH = 8 * mod(ASCII, 32 ) , checking each entry for one of

three possibilities: (l) an empty entry (flag byte pointed to by HASH

is zero), indicating that the desired entry is presently not in the

table and causing insertion; (2) the variable name in the symbol table

matches the recognized name in the B,C registers (SEM then returns the

offset from STABH, the base address of the symbol table); or (3) the

search fails 32 times and then signals an error - "symbol table full".

k.3 Symbol Table Structure

The structure of the symbol table is

:

flags first

char

second

char
binary value of floating

point variables

where

The flag byte is subdivided into its bit fields as

V6b
5V3b

2
b
l
b
O

b„ =0 entry empty

= 1 entry in use

b = not an array

= 1 variable is an array

IDs - not a user function

= 1 variable is a user function
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SYNA uses b to signal "defined" or -undefined" during the parse. The

remaining bits could be used individually or in combination to signal

other possible data types (e.g., character strings) in a future improved

version.

Single character scalar names are stored in the symbol table

as [first char] [second char] = [letter] [blank], double character scalars

as [letter] [digit], arrays as [letter] [(], and user functions as [FN]

[letter]. Thus the type of any entry may be determined from either its

flag bits or its name.

For arrays and user functions whose value is not stored in the

symbol table, the 5 byte value field is used for other information. In

particular, the entries look like:

scalar entry

1

5 byte value

array entry X X up
x

up
2

up
3

user function high low disp X X

where: up. is the i upper bound of the array, with all

arrays internally having three dimensions whose

default upper and lower bounds are zero;

(high, low) is an address pointer which marks the

return address when the function has been evaluated;

disp is the symbol table displacement of the function's

dummy parameter.

Note that the design of the symbol table allows the simultan-

eous use of the scalar A, the scalars AO, Al, ..., A9, the array A( , and

the user function FNA with no ambiguity and no extra overhead in either

LEXI or LOOKUP.
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5. EXECUTION PACKAGE

No computing system intended for scientific use would be complete

without true number -crunching ability. Since our BASIC system is designed

for a whole range of applications, it seemed imperative that extensive

floating point arithmetic capabilities be included. In an effort not to

"reinvent the wheel," we decided to purchase the floating point arith-

metic package utilized by the Datapoint 2200, a popular minicomputer

whose CPU is similar to an Intel chip. The Datapoint software provides

the means for floating point addition, subtraction, multiplication,

division, and comparison, as well as both ASCII-character-string-to-

internal-floating-point and internal-floating-point-to-ASCII-character-

string conversion
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6. SUMMARY

The whole project, which extended for a period of approximately

five months, successfully illustrated the feasibility of a BASIC inter-

preter running in a microprocessor environment. The basic design of the

system is good, and serves well as a model for similar interactive

systems

.

It is regretable that time did not permit us to try our design

on real-world hardware. We believe that the actual implementation of

such a system might well be a project for future research.
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APPENDIX A

BASIC LANGUAGE BW

<basic program>

<program statement>

<sequence number>

<basic statement>

<let statement>

<formiila>

<conj-unction>

<Boolean>

<expression>

<term>

<factor>

<primary>

<relative>

<operand>

<variable>

<scalar variable>

<array varia"ble>

<subscript>

<program statement> | <basic program>

<program statement>

<sequence number> <basic statement> (CR)

,2
= <digit> {<digit>}

<let statement>
|
<dim statement>

J

<def statement>|

<rem stateraent>
|

<goto statements] <if statement>

<for statement>
|
<next statements*

|

<gos-ub statement>
|
<return statement>|

<input statement>
|
<print statement>|

<stop statement>
| <end stateraent>

LLET) <variable> f^\ <formula>

<con;junction>
|
<formula> (ORj <conjunction>

<Boolean>
|
<conjunction> rANDj <Boolean>

<expression> I <Boolean> <relative> <expression>

<term> [ <expression> (+
|
-) <term>

<factor>
|
<term> (*|/) <factor>

<primary> | <unary> <primary>

<operand>
|
<primary> ( t) <operand>

©10101 ©101©
<variable>

|
<number> I <function>

<scalar variable> I <array variable>

<letter> [<digit>]

<letter> <subscript>

_(_
<expression> { , <expression>} _ )_
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<letter>

<digit>

<unary>

<function>

<function name>

<number>

<dira statement>

<array list>

<upper bound>

<statement>

<rem statement>

<goto statement>

<seq"uence number>

<if statement>

<for statement>

<next statements

<gosub statement>

<return statement>

<input statement>

<print statement>

<print list>

<character string>

<stop statement>

<end statement>

A
|
B

|
C

I

...
|

Z

| 1 | 2
| 3 | k

| 5 |
6

| 7 [ 8
| 9

= + NOT)

<function name> (<expression>)

(FN) <letter>
|

(SIN)
f

(cos)
|

(LOG) [~ (sqr)

(exp)
|
ft

[+
|
-] {<digit>

+
[.] |

<digit>* <digit>
+
]

[E[+
|
-] <digit> [<digit>]]

(DIM) <array list>

= <letter>
_£_

<upper bound> { , <upper bound>] _ )

2 ,+
{ ,<Letter> _£_

<upper bound> { ,<upper bound>} }

<number> such that < number < 255

JDEF) (FN) <letter> {_ <letter> ]_ (^\ <formula>

(REM) <character string> (cr)

K)TQ <sequence number>

<number> such that < number < 999

(if) <formula> (THEM <sequence number>

(FORJ <scalar variable> C=) <formula> (TO) <formula>

[ (STEFJ <formula> ]

(NEXT) <scalar variable>

^
GOSUBy <sequence number>

(return)

(INPUT ) <variable> ( , <variable> }

( PRINT ) <print list> { , <print list>|

"<character string>" |
<formula>

any TTY character except "

(STOP]

KNm
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APPENDIX B

DESCRIPTION OF THE STATE TRANSITIONS FOR THE SYNTACTIC RECOGNIZER

The parser that is used in our BASIC system is essentially a

one stack push down automata; the parsing technique is top-down goal

oriented with the stack used for state sub-calls and recursion. book-

keeping. In the following discussion the abbreviations used are:

SYMB: a token's symbol class, i.e., identifier, reserved word, etc.

SEM: a token's concrete representation, i.e., "+", "IF", etc.

In order to describe the parser's state transitions a few state

transition diagram conventions or notations have been developed. A

transition from one state to another will occur at least once for every

new token from the input string. Each state in the diagram will have

at least one branch coming out of it. These branches are usually labeled

with the conditions necessary for that branch to be taken. An unlabeled

branch is taken as a last resort. If none of the branches is satifsfied,

it indicates an error condition. If a branch has more than one condition

on it, the conditions are each placed on a separate branch and the

branches are connected together; to reach the end of a branch, all inter-

mediate branches must be satisfied. The end of a branch sequence contains

the state transition information,, Usually, just the "next state to move

into" is indicated; sometimes a box, such as

<state>
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may appear at the end of a branch; this indicates an intermediary "state

call" must take place before the transition to the "next state" occurs

(in other words, save the "next state" on the parser stack and make the

state transition to the state in the box)., Likewise, sometimes a symbol

such as

may occur in a branch; this indicates the state transition is to the

state at the top of the stacko

For example, examine the BASIC GOTO statement:

<goto> : : = GOTO <seq.#> EOL

The state transition diagram for this statement is:

SI) SEM = "goto" . S2

S2j SYMB = <se g..#> , S3

S3 J SEM = eol . <new statement>

This is interpreted as

:

If you are in state SI and the current token is a "GOTO", then

move into state S2. If you are in S2 and the current token

class is <seq.#>, move into state S3. If you are in state S3,

and the current token is "EOL" (end of line), move to the state

for the beginning of a new statement. Note that in all cases

here, if the given condition is not met, there is an error.

As another example, consider the IF statement:

<if> ::= IF <expression> THEN <seq.#> EOL

The transition diagram for this is:

SI SM="if <expression^ S2

S2
J

SEM = "then" , S3
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SEM = eol # <new statement>

This is interpreted as:

If you are in state SI and the current token is an "if", then

push S2 onto the parser stack and make the transition to state

<expression> (although not shown, state <expression> will parse

an expression as defined by BASIC and, when finished, will make

the transition to the state at the top of the stack, namely S2,

and then pop the stack). The rest of the diagram is interpreted

similarily.

This concludes the discussion of the state transitions for our system.

The table system

Given the state transition diagrams for a language, the remaining

problem is to encode the information and actions of the diagrams into a

table format. To succeed, the table must contain fields for:

1) Checking the branch conditions.

(a) Checking the SYMB or SEM values of the current token

(b) Ability to check efficiently for all the branches of a state

(c) Ability to detect an error condition

(d) Ability to check multiple conditions, i.e., more than one

branch condition to reach the end of the branch

2) Stack operations.

(a) Push a state onto the parser stack

(b) Pop a state off the parser stack and make the transition

to that state

3) Normal "next state" transitions.

k) Since taking a branch normally means accepting the current token

and moving on to the next token in the input string, there must

be someway of making an 'epsilon move', i.e., changing the state

while not moving the input pointer.
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5) In this system we wanted to be able to have the table drive the

actual execution of the statement as well as just syntactically

parse it. Also, since the system will keep up with the programmer

(FOR- loop nesting checks, defined functions and arrays) even

during simple parsing mode, the table needs to indicate what

routines to perform and when they should be performed.

With these requirements in mind, we describe the actual table

system. The system is divided into two parts, the table itself and a

routine to interpret the table. Consider the table to be actually a

large vector, where each element of the vector is one "entry" in the table.

There are four types of entries in the table: HEADER, VALUE, CONTROL, and

ERROR.

HEADER

The HEADER entry contains information about the next few entries in

the table. It tells what tests to make, how many of them to make, and what

to do if they all fail. In particular, there are three fields in the entry:

TYPE (2 bits): The TYPE field contains a number (0-3) that ident-

ifies the type of branches for that state.

QUAN {k bits): The QUAN field contains the number of branches for

the state.

FAIL (2 bits): The FAIL field contains a number indicating what

to do if all the branch tests fail.

These fields are discussed in more detail on page 29.

VALUE

The VALUE entry contains only one field. This field holds a

number which is to be compared with either the current SYMB or SEM token

value, depending on the previous HEADER that was processed. If the field's

number matches the current token properly, then the correct branch has been
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located for this state and the next CONTROL entry should be interpreted.

On the other hand, if the field's number did not match the token, then

this branch has failed; in this case, the previous HEADER information will

determine what table entry to look at next.

CONTROL

The CONTROL entry is interpreted only when a correct branch has

been located for a state. The CONTROL entry corresponds to "the end" of a

branch in the state transition diagram. It contains fields for Push state,

POP, Next state, whether more conditions must be checked, whether this is an

epsilon move, and also an execution/parse routine number, along with three

bits for the the mode checking - one for each mode: unparse, parse, execute,

If the mode bit in the table that corresponds to the actual mode of the

system is set, the routine is called. In all cases, if a field value is 0,

then. that option is ignored when the CONTROL entry is interpreted.

ERROR

The ERROR entry is interpreted when all the branches have failed

for a state and the HEADER'S FAIL field equals 1, indicating an error exists,

The ERROR entry contains an error number, which can be extracted and passed

on to the error display routine.

These are the entries in the table. The detailed bit implementation follows

HEADER

quantity fail type
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TYPE

The TYPE field determines exactly what branch conditions must be

checked for and what the order of the next entries in the table is.

type = Unconditional TRUE branch. The next table entry is a

CONTROL entry that is immediately interpreted.

type = 1 Branch condition : SYMB value check.

The following two table entries consist of a VALUE entry

followed by a CONTROL entry; the current token's SYMB

value is compared to the VALUE table entry; if they are

equal, then the CONTROL entry is interpreted; if unequal,

then the CONTROL entry is jumped over in the table and

different tests can be made (see fail).

type = 2 Branch condition: SEM value check.

Same form as type=l.

type = 3 Special case test. QUAN contains routine number. CONTROL

follows

.

QUAN

The QUAN field determines how many similar branches a state has.

It gives the number of VALUE/CONTROL pair entries following the HEADER.

For type =3, the QUAN value is a special case routine number.

FAIL

The FAIL field is used only when all the other checks have failed.

fail=0 The next entry is a new HEADER with a new set of condition

checks. It is "flowed" into.

fail = 1 The next entry is an ERROR entry.

fail = 2 The next entry is an alternate CONTROL entry that should be

immediately interpreted.
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VALUE

value

Contains one number to be used according to the previous HEADER information,

ERROR

ERROR

#

8

Contains an error number that is passed to the error message writer when

an error is detected.

CONTROL entry: 18 bits

Unparse
mode
bit POP Push state

Execution
Parse

Routine §

Mode bits

Parse Execute

End of
branch
bit

Epsilon
move

reparse Next state

1 1 6 6 1 1 1 1 6

The CONTROL entry is divided into three bytes. With the exception of the

Unparse bit, all the fields are interpreted in order as they come. For the

Execution/Parse/Unparse routine, the Unparse bit is ORed into the third

bit position of a byte, and the other mode bits are ORed into the first

two bit positions. Then this byte is compared with the current mode

switch (which has values: Unparse = h
>
Parse =2, Execute = l). If the

corresponding bit is set the execution routine is called.
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STATE DIAGRAMS' FOR BASIC LANGUAGE
TABLE-DRIVEN INTERPRETER
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SYMB = Const

err 1

ST1 (2) STEND (k6)

ST1

(2)

SYMB = rswd

err2

SEM = let

SEM = goto

SEM = if

SEM= stop

SEM= end

SEM = for

SEM= next

SEM = rem

SEM = gosub

SEM= return

SEM= input

SEM= print

SEM= dim

SEM= def

err 3

II (3)

el) Gl (6)

EXPR (37) IP1 (8)

ST0P1 (9)

ST0P1 (9)

FORI (10)

NEXT1 (16)

pelUV—(pop)— reparse

el) G0SUB1 (17)

jS) G2 (7)

INI (21)

(e23j- PR1 (2k)

DIM1 (28)

DEF1 (31)
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SYMB = ident

.SYMB = array

err k

e2

ARR1(19)

12(h)

^(^7) reparse

< L2 ( h ) ) SEM=e q

err 5

EXPR(37) 13(5)

L3(5)L__SM=eol

err

SYMB = const

err 7

-(pop)

—

reparse

G2(7)

G2(7) l SEM=eol

err 8

pop) reparse

IF1 ( 8 )) SEM=then

err 6

Gl(6)

SEM= eol

err 8

pop) reparse

FORI
,(io),

SYMB = ident

err

F0R2 (11)

SEM= eg

err 5

EXPR(37) F0R3(12)

F0R3

(12)

SEM= to

err 9

EKPR(37) -F0RJ+(13)
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SEM= step

EM= eol

err 6

S'EM = eol

err

SYMB = ident

SYMB= const

err 7

SEM = eol

SEM= comma

SEM= thesis

err

)) SYMB = ident

SYMB = array

err 11

elOl

ell)

Jel2

&

ARR1(19)

EXPR(37) F0R5(lU)

-F0R6 (15) reparse

-FOR6(15) reparse

pop) reparse

•G2(7)

•G0SUB2(l8)

pop) reparse

EXPR(37) JVRR2(20)

EXPR(37) ARR2(20)

IN3(23)

-IN2(22) reparse

IN3(23) reparse
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DEF

(3D

SEM = comma

SEM = eol

err 11

PR1 ( 2k )) SEM=eol

err

SYMB = array

err 12

SEM= comma

SEM= thesis

err

Sffl= comma

EM= eol

err 13

SYMB = userfen

err ik

INI (21)

'pop)

.(POP)

^>R2(25)

Pe27l

^pe28\

DIMl(28)

(pop)

reparse

reparse

reparse

PRM27)

PR3(26)—repa:rse

PR4(27) reparse

reparse

EXPR(37) _DIM2(29)

EKPR(37)[ DIM2(29)

DIM3(30)

reparse

DEF1(32)
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SEM = paren

SYMB = ident

err 16

SEM = thesis

/def^A

err 17

SEM = ea

err 5

SEM= eol

SYMB = punlef

t

SYMB = ident

SYMB = array

SYMB = const

SYMB = opun/opnot

SYMB = bif

SYMB = user fen

err

SEM= paren

err 15

DEF2(33)

DEF^(35)

.(pe3l).

IP°P

ARR1(19)

<e37>

pe33)

EXPR(37)

DEF3(3*0

EXPR(37) .DEF5(36)

reparse

EXPR(37)| 0PER(^5)

0PER(l+5)

EXl(38) reparse

0PER( 1+5)

EXPR(37)

ARGl(^O)

ARGl(^O)

BIF1(39)

FCNl(te)

0PER(i+5) reparse

0PER(^5) reparse

,ARG2()4l)
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SEM = thesis

err 17

reparse

EXPRFCN (kk ) FCM2 repar s e

(U3)

test

Mode = execute

Special Case 1

SYMB = oplla

SYMB = opbin

SYMB = punrite

SYMB = oprel

SYMB = opcond

STACKTOP=oper

special case 3

-err 15

EXPR(37)

(ek2\

[eh^

Special Case 2

stacktop- o-yevik'o)

OPER(l^)— reparse

reparse

.reparse

EXPR(37)

EXPR(37)

reparse

EKPR(37)

EXPR(37)

reparse

^ -UeW

l£(k) reparse
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APPENDIX D

PROGRAM EXAMPLE

The following pages show the successive (simulated) states of

the TV screen in response to various keyboard commands issued in the

text-editing mode.
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The simulated TV screens below show the successive states

of the visual image as it responds to insertion, deletion,

replacement, and cursor movement under control of the BASIC

text editor.

The screens are presented in columns, and should he read

top to bottom and left to right.

9 LET A9 LET A = 9 LET A = 6
9

LET 9 LE t A 3 LET A = 63 LET A = 6
IF 9
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LET A = 6

IF A S
LET A = 6

IF A = 7 THEN 9
LET A = 6

IF A = 7 THEN P = OS

LET A = 6

IF A = »
LET A = 6

IF A = 7 THEN P3
LET A = 6

IF A = 7 THEN P = Q
3

LET A = 6

IF A = 7a
LET A = 6

IF A = 7 THEM P 3

LET A = 6
IF A = 7 THEN P =

Da

LFT A = 6

IF A = 7 ^

LET A = 6

IF A = 7 THEN P = 3

LET A = 6

IF A = 7 THEN P

DE9

=



1+0

LFT A = 6

IF A = 7 THEN
DEF3

LET A = 6
P = if A = 7 THEN P =

DEFINE A<^

LET A = 6

IF A = 7 THEN P

OEFINF At It 2) fl

=

LET A = 6
T F A = 7 "HEM
DEFI?

P =

LET A

IF A =

DEFINE
7 THEN P =

AtlS)

LE T A = 6

IF A = 7 THEN
DEFINE All, 2)

3

P =

LE T A = 6

IF A = 7

DEFINE
'HEN P =

LET A = 6
IF A = 7 THEN P =

DEFINE A(l,»

LET A = 6

IF A = 7 THEN P

aDEFINF A (1,2)

=

LET A = 6

IF A * 7 THEN
DEFINE?

LET A = 6

P = IF A = 7 THEI^ P =

DEFINE AC1,25>

LET A = 6

IF A = 7 THEN P

D^EFINE A (Lf 2)

=
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LET ft = 6

IF ft = 7 THEN P =

DEFINE 4(1,2)

LET A' - 6
IF A = 7 THEN P =

DEF3> A<1,2»

LET A = 6

IF A = 7 THEN P =

3EF A (1,2)
Q

LET A = 6

IF A = 7 THFN P =

DEF3INE A(l,2)

LET A = 6
IF A = 7 THEN P =

DE3F A(l,2)

LET A = 6

IF A = 7 THEN P = Q

3F A (1,2)

LE T A = 6

IF A = 7 THEN
DEFINE A(l,2)

P =
LET A = 6

IF ft = 7 THEN P =

03>EF A( 1,2)

LET A = 6

IF A = 7 THEN P =

a A( 1,2)

LET A = 6

IF A = 7 THEN P =

DFF^E A(l,2)

LET A = 6

IF ft = 7 THEN P =

3DEF A(l,2)

LET A = 6

IF A = 7 THEN P =

3 A(l,2)
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LE T A = 6

IF A = 7 THFN
DEF a A( I ,?)

p = O

LFT A = 6
TF A = 7 THEN
OFF Ml,?)
THIS

P =
LET A = 6

TF A = 7 THEN
DEF A(l,2)
THIS LH

p = n

LET A = 6

IF A = 7 THFN
DEF Ml, 2)

P = q
LET A = 6

IF A = 7 THFN
DEF A (1,2)
THISS

P =

LET A = 6

IF A = 7 THEN
DEF A(l,2)
THIS LIN3

P =

LET A = 6
tf A = 7 THEN
DEF A (1,2)
T3

P = Q
LET A = 6

IF A = 7 THEN
DEF A(l,2)
THIS ??

P =

LE T * = 6

IF A = 7 'HEN
DEF A(l,2)
THIS LI NFS

P = O

LE T A = 6

IF A = 7 THEN
DEF A (1,2)
TH3

P =

LET A = 6

IF A = 7 THFN
DEF A(l,2)
THIS LS

P =

LET A = 6

IF A = 7 THFN
DEF Ad, 2)

THIS LINE 9

P =
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LE T A = 6

IF A = 7 THEN
DEF A(l,2)
THIS LINF W3!

LET A = 6

P = IF A = 7 THEN! P =

OEF A (1,2)
THIS LINF WILL S>

LET A = 6
IF A = 7 THEN P =

OEF A (1,21
THIS LINE WILL BE OS)

LET A = 6
IF A = 7 THEN
DEF A(l,2)
THIS LINF WIS)

LET A = 6

P = Q IF A = 7 THEN P =

DEF A(l,2)
THIS LINF WILL B3

LET A = 6
IF A = 7 THEN
DEF A(l,2)
THIS LINE WILL

P =

BE DE3

LET A = 6

IF A = 7 T HFN P

DEF A(l,2)
THIS LINE WHS!

LET A = 6
= IF A = 7 THEN P = I

OEF A<1,2)
THIS LINE WTLL BES>

LET A = 6

IF A = 7 THEN
DEF A(L,2)
THIS LINE WILL

P =

BE DELS*

LET A = 6

IFA=7 THFNP=Q
DEF A(L,2)
THIS LINF WILL^

LET A = 6

IF A = 7 THEN P =

DEF A(l,2)
THIS LINE WILL BE

LET A = 6
IF A = 7 THEN
DEF A(l,2)
THIS LINE WILL

P =

BE DELE 3
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LET A = 6

IF A = 7 THFM
DEF A (1,2)
THIS LINE WILL

p =

BE DELETE

LET A = 6
IF A = 7 THEN
DEF A(l,2)
THIS LINE WILL
R9

P =

BE DELE
_
ED

LET A = 6

IF A = 7 THEN
DEF 4(1,2)
THIS LIME WILL

p =

BE DELETE?

LET A = 6

IF A = 7 THEN
DEF A (1,2)
THIS LINF WILL
RES!

P =

n E DELETED

LET A = 6

IF A = 7 THFN
DEF All, 2)

^HIS LINE WILL

p =

KE DELETED?

LET ft = 6
IF A = 7 THEN
DEF A(L,2)
THIS LINE WILL
REPS

p =

«E DELFTED

LE T A = 6
IF A = 7 T HEN
DEF AQ,2)
THIS LINE WILL

P =

BE DELETED

LET A = 6
IE A = 7 THEN
VEF A(l f 2)
THIS LINE WILL
RFPL?

P = Q

BE DFLETED
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LET A = 6

IF A = 7 THEN
DEF A<1,2)
THIS LINE WILL
REPLAY

P =

RE DELETED

LET A = 6

IF A = 7 THEN
DEF A (1,2)
THIS LINE WILL
REPLACE R^

P =

BE DELETED

LET A = 6

IF A = 7 "THEN

DEF A(l»2)
THIS LINE WILL
REPLACE

P = Q

BE DELETED

LET A = 6

IF A = 7 THEN
DEF A(l,2)
THIS LINE WILL
REPLACE P a

P =

BE DELETED

LET A = 6

IF A = 7 THEN
DEF A(l,2)
THIS LINF WILL
REPLACED

P =

BE DELETFD

LE T A = 6

IF A = 7 THEN
DEF A(l,2)
THIS LINE WILL
REPLACE P W3

P =

BE DELETED

LET A = 6

TF A = 7 THFN
DEF A(L,2)
THIS LINE WILL
REPLACE a

P =

BE DELETED

LET A = 6
IF A = 7 THEN
DEF A(l f 2)
THIS LINE WILL
REPLACE P WIS)

P =

BE DELETED
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LET A = 6

IF A = 7 THEN
DEF A(l,2)
THIS LINE WILL
REPLACE B WI T a

P =

PE DELETED

LET A = 6

IF A = 7 THEN
DEF A(l,2)
THIS LINE WILL
REPLACE R WI^h

P =

BE DELETED
L3

LET A = 6

IF A = 7 THEN P =

DEF A(l,2)
THIS LINE WILL BE DELETED
REPLACE P Wl^Hfl!

LET A = 6

IF A = 7 THEN P =

DEF A (1,2)
THIS LINE WILL BE DELETED
REPLACE R WI~H L S)

LET A = 6

IF A = 7 THEN
DEF Ml, 2)

THIS LINE WILL
REPLACE R with

P =

BE DFLETFO

LET A = 6

IF A = 7 THEN P =

DEF A(l,2)
THIS LINE WILL BF DELETED
REPLACE R WITH L 3

LE T A = 6

IF A = 7 THEN P =

DEF A(l,2)
THIS LINF WILL BE DELETED
RE°LACE p WI T H 3

LET A = 6

IF A = 7 THEN P = o

DEF A (1,2)
THIS LINE WILL BE DELE
REPLACE P WITH L P S»

TD
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LET A = 6
IF A = 7 THEN P =
DEE AM, 2)
THIS LINE WILL BE
REPLACE R WI T H L
9

DELETED
P

LET A = 6

IF A = 7 THEN P =

DEF AM, 2)

THIS LINE WILL BE DELETED
REPLACE R WITH L La

LET A = 6

IF A = 7 THEN P =

DEF A (1,2)
THIS LINE WILL PE DELETED
REPLACE R WITH L P3

LET A = 6
IF A = 7 THEN P = Q
DEF AM, 2)
THIS LINE WILL BE DELETED
^REPLACE P WITH L L

LET A = 6

IF A = 7 THEN P = Q
DEF AM, 2)

THIS LINE WILL BE DELE T FD
REPLACE R WITH L ?DR

LET A = 6
IF A = 7 THE>^
DEF AM, 2)
3THIS LINE WIl L
REPLACE P WITH

P =

BE
L

DELETED
L

LET t = 6

IF A = 7 THEN P =

nEF AM, 2)
THIS LINE WILL BE DELE T ED
REPLACE P WITH L ^P

LET A = 6
IF A = 7 THEN P =

DEF AM, 2)
^REPLACE R WITH L
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LET A = 6

IF A = 7 THEN
OEF A (1,2)
REPLACE R WITH
3

P =

LET A = 6

IF A = 7 THEN P =

DEF Ad, 2)

REPLACE R WITH L
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